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a (i) Me3Al (2 equiv)-Cl2ZrCp2 (0.2 equiv) in (CH2Cl)2, room tem­
perature and then I2 (1.2 equiv) in THF, 0 0C; (ii) Me3SiC^CCH2-
CH2ZnCl (1 equiv), Pd(PPh3)4 (0.05 equiv) in THF, room tempera­
ture, 3-6 h and then KF-2H2O (3 equiv) in DMF; (hi) Me3Al (2 
equiv)-Cl2ZrCp2 (0.2 equiv) in (CH2Cl)2, room temperature, evap­
oration, «-BuLi (1 equiv) and then (CH2O)n in THF. 

ylation of 4-bromo-l-butyne (n-BuLi and Me3SiCl) followed 
by treatment with a mixture of Mg (1.5 equiv) and anhydrous 
ZnCl2 (1 equiv) in refluxing THF (3-4 h).13 The organozinc 
reagent 10 and 9 were mixed with Pd(PPh3)4 (0.05 equiv) to 
give the desired cross-coupled product in 90% GLC yield. 
Significantly, no other peaks were present in any more than 
trace amounts. The crude cross-coupled product was treated 
with KF-2H20 (three times), dissolved in DMF 1 4 at room 
temperature to give 11, bp 57-58 0 C (0.5 mmHg), in 80% yield 
from 9 (procedure ii). The stereoisomeric purity of 11 was 
>98% based on its GLC and NMR examination, and its 
overall purity was >95%. Without further purification 11 was 
subjected to the second carbometalation followed by ate 
complexation and treatment with paraformaldehyde, as pre­
viously described15 (procedure iii). Examination of the crude 
product by GLC (Carbowax 20M) and 1H NMR indicated 
the formation of ~95% pure (f.fj-farnesol (5) in 91% yield 
(85% isolated). Purification by column chromatography 
(Florisil, 20:1 benzene-AcOEt) gave 5 which was both stere­
ochemical^ and regiochemically >98% pure. 

One distinctly attractive feature of the methodology herein 
reported is that the two-step cycle consisting of procedures i 
and ii can readily be repeated for the construction of long-chain 
1,5-diene skeletons. Thus no major difficulty was encountered 
in synthesizing 6 by applying twice the two-step cycle con­
sisting of procedures i and ii. Here again the overall process 
is estimated to be >98% stereoselective. Minor apparently 
regioisomeric byproducts (<5-10%) in crude 16 (Scheme II) 
were readily separated by column chromatography (Florisil, 
hexane). The tetraenol 6 was obtained from 16 via procedure 
iii (80% by NMR). After simple column chromatography 
(Florisil, 20:1 hexane-AcOEt) 6 was isolated in 61% yield as 
an essentially pure single isomer (1H and 13C NMR and 
TLC). 
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Unprecedented Regiospecificity and Stereospecificity 
in Reactions of P h 3 C + P F 6

- with Rhenium Alkyls 
of the Formula (7/-C5H5)Re(NO)(PPh3)(CH2R) 

Sir: 

With a single exception,1 the abstraction or elimination of 
a-hydrides from transition metal alkyls has been observed only 
when /3-hydrides are absent.2 In this communication, we report 
that the rhenium alkyls (77-C5H5)Re(NO)(PPh3)(CH2C6H5) 
(1), (T)-C5H5)Re(NO)(PPh3)(CH2CH3) (2), and (r,-
C5H5)Re(NO)(PPh3)(CH2CH2CH3) (3) each react with 
P h 3 C + P F 6

- to afford isolable cationic alkylidene complexes 
[ (? i -C 5H 5 )Re(NO)(PPh 3 ) (=CHR)]+PF 6 - in high yields, 
despite the presence of/3-hydrides in 2 and 3. Furthermore, a 
novel addition-elimination cycle is utilized to demonstrate that 
P h 3 C + P F 6

- stereospecifically abstracts one diastereotopic 
a-hydride over the other. 

Alkyls 1-3 were isolated in 60-80% yields from the reactions 
of C6H5Li, CH3Li, and CH3CH2MgCl, respectively, with the 
previously described3 methylidene complex [(77-C5H5)-
Re(NO)(PPh3)(CH2)J+PF6- (4).4 Treatment of 1 in CD2Cl2 

with 1.1 equiv of P h 3 C + P F 6
- at - 7 0 0 C resulted in the im­

mediate formation of benzylidene complex 5k (eq i), as evi­
denced by 'H NMR resonances at h 16.08 (s, 1 H) and 5.89 
(s, 5 H). When the solution was warmed to 10-20 0C, 5k began 
to disappear as a new benzylidene complex, 5t, formed. After 
solvent removal, 5t could be isolated in 70-80% yield by crys­
tallization from CHCl3-petroleum ether (30-60 0C). 6 In the 
solid state, 5t proved stable to 215 0 C. 

0002-7863/80/1502-3299501.00/0 © 1980 American Chemical Society 



3300 Journal of the American Chemical Society / 102:9 / April 23, 1980 

a 
(i) /RT\ 

ON I PPh3 

Ph3C+ PF6
-; 

H2C V 
C6H5 

ON Il PPh3 PF6 

/ C \ 
H C6H5 

5k, 5t 

k ^ kinetic 

t =} thermodynamic 

The most plausible explanation for the above observations 
is that 5 can exist as two geometric isomers owing to restricted 
rotation about the rhenium-benzylidene bond.7 Although exact 
structures cannot be assigned with certainty, Huckel MO 
calculations on related complexes predict eclipsing of the al-
kylidene ligand with the nitrosyl group.8 Since we observed 
eclipsing of the nitrosyl ligand with the plane of the formyl li­
gand in the solid-state structure of (71-C5H5)Re(NO)-
(PPh3)(CHO),9 we presently favor geometries I and II 
(Newman projections down the rhenium-alkylidene axis) for 
5k and 5t, respectively. CPK molecular models indicate I to 
be considerably more strained than II. 

Scheme I. An Organometallic Walden-Type Cycle 
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Treatment of 2 in CD2Cl2 with 1.5 equiv of P h 3 C + P F 6
- at 

—70 0 C resulted, much to our surprise, in the clean and im­
mediate formation of ethylidene complex 6k (eq H).10 At 10-20 
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0 C, 6k diminished as 6t appeared. After 4 h at room temper­
ature, < 1 % 6k remained. Upon crystallization, mixtures of 6t 
and 6k were obtained (60-75% yields, 90:10-50:50 ra­
tios).10 

To verify that 6k and 6t are a-hydride abstraction products, 
(Tj-C5H5)Re(NO)(PPh3)(CD2CH3) (2-a-d2) was synthe­
sized." Upon treatment with P h 3 C + P F 6

- , [(71-C5H5)-
Re(NO)(PPh 3 ) (=CDCH 3 ) ]+PF 6 - (6-a-di)n formed ex­
clusively. 

The secondary /3-hydrides of 3 might be expected to be more 
prone toward abstraction than the primary /3-hydrides of 2. 
However, reaction of 3 in CD2Cl2 with 1.5 equiv of Ph 3 C + PF 6

-

at —70 0 C cleanly yielded the «-propylidene complex [(77-
C 5 Hs)Re(NO)(PPh 3 ) (=CHCH 2 CH 3 ) ] + PF 6

- (7k).13 At 20 
0 C , 7k diminished as 7t formed.13 Crystallization afforded a 
77% yield of a 90:10 7t-7k mixture. 

Experiments were conducted to test the stereospecificity of 
these reactions. First, 5t was reacted with Li(C2H5)3BD, re­
sulting in the formation of \-a-d\ (70-80% isolated yields), 
a compound with two chiral centers. The ' H NMR spectrum 

of this material in CD2Cl2 [5 3.41 (br d, j3iP_iH = 8, 7=H 1H 
< 2 Hz)] indicated one of the two diastereotopic hydrogens 
normally present3 in 1 to be completely absent (step a, Scheme 
I). When this \-a-d\ was reacted with P h 3 C + P F 6

- as de­
scribed above for 1-rfo, 5k-</i and then 5t-rfi were formed ex­
clusively . '4 The mass spectrum of the Ph3CH formed in this 
reaction indicated Ph3CD to be present at natural abundance 
level. After isolation, St-^i was reacted with Li(C2H5)3BH, 
yielding \-a-d\, but with the absolute configuration at carbon 
opposite the isomer described above [1H NMR (CDCl3) 8 2.87 
(d, j3ip_iH = 3 Hz)]. After reaction with P h 3 C + P F 6

- and 
warming, 5t was regenerated (step d, Scheme I). Relative areas 
of the C5H5 and benzylidene 1H NMR resonances showed 
~ 6 % 5t-^i to be present. This indicates the average stereo­
selectivity of the four steps in Scheme I to be on the order of 
98%. However, we believe that a kinetic isotope effect adversely 
affects the outcome of the final step d and constitutes the 
principal loss of specificity. 

To summarize, the above data indicate that (a) only one of 
two diastereotopic a-hydrides of 1 is prone to abstraction by 
Ph 3 C + PF 6 " and (b) triethyl borohydride attacks specifically 
one face of the benzylidene ligand of 5t. As a final probe, 5k 
was prepared from 1 in situ at —70 0 C and treated with 
Li(C2H5)3BD. The \-a-d\ formed was a 92:8 mixture of dia-
stereomers; the configuration at carbon in the major product 
was opposite that obtained from 5t and Li(C2Hs)3BD. Thus 
5k and 5t undergo preferred nucleophilic attack on the same 
benzylidene face. 

Several aspects of the preceding reactions merit discussion. 
First, geometric isomers arising from metal-carbon multiple 
bonding have not, to our knowledge, been previously observed. 
Secondly, the regiospecificity evidenced in the reactions of 2 
and 3 with Ph 3 C + PF 6 " supports the growing feeling that 
a-hydride eliminations and/or abstractions may be more 
common in catalysis than previously supposed.15 However, 
with isoelectronic (7i-C5H5)Fe(CO)?-alkyl complexes, /3-hy-
dride abstraction by P h 3 C + P F 6

- has been unequivocally 
demonstrated.'6 We believe it possible that an electron-transfer 
step might alter the selection rules for a- vs. /3-hydride ab­
straction. Finally, transformations of the type depicted in 
Scheme I establish a remarkable degree of control by a chiral 
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metal center on the development of stereochemistry at an ad­
jacent carbon. Since other nucleophiles can be expected to react 
similarly to L i ^ H s ^ B H , and stereospecific methods for 
metal-alkyl bond cleavages have been developed for related 
systems,17 important extensions of these reactions in asym­
metric organic synthesis can be anticipated. 
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Metal Atom to Cluster to Bulk Transformations. 
Electron Spin Resonance Studies of Silver Atoms in 
Rare Gas Matrices at 12 K. Quantum Size Effect 

Sir: 

The controlled clustering of silver atoms in a wide variety 
of matrices has directed attention to the general question of 
the fundamental interrelationship between metal cluster 
nuclearity and molecular and bulk properties, as seen through 
the eye of various spectroscopies. A number of groups have 
recently examined the optical absorption spectra of very small 
silver clusters generated by matrix cryochemical methods and 
have used the appearance of a surface plasma absorption as 
one criterion for establishing the onset of bulk silver micro-
crystalline properties, from that of molecular silver cluster 
behavior.1 "3 Although the nuclearity determination above six 
silver atoms is not yet firmly established, a relatively smooth 
conversion from a one-electron molecular eigenstate cluster 
picture into that of conduction band bulk-like character is 
emerging from this "optical-electronic" image of the very early 
stages of silver nucleation.1-3 

Along with the optical absorption measurements of the 
embryonic stages of silver cluster growth, we have also recently 
conducted a series of ESR measurements, in a designed at­
tempt to collect complementary structural and electronic in­
formation for the paramagnetic species present in the silver 
cluster system. It is the purpose of this communication to report 
that, by simultaneously monitoring the optical and ESR 
spectra for Ag/inert gas samples deposited onto a sapphire 
rod,12 it is possible to establish that the onset of collective 
electronic excitations in silver clusters around a nuclearity of 
~6-13 atoms1'2'3 is accompanied in the ESR spectrum by the 
appearance of a conduction electron spin resonance (C ESR) 
whose band width and g-shift behavior provides one of the few, 
direct experimental verifications of "quantum size effects" in 
very small metal particles.4 

At high silver concentrations in Ar or Kr matrices (1:102~3), 
or after extensive matrix annealing or photoaggregation1 of 
matrices dilute in silver (1:103~4), the samples showed only 
weak ESR lines corresponding to the hyperfine components 
of isolated 107Ag/109Ag atoms5 (nuclear spin / = '/2 in both 
cases, with roughly equal natural isotopic abundances), as well 
as a resonance around the free electron value of g = 2, whose 
intensity, band width, and associated fine structure depended 
on the matrix preparation and pretreatment mentioned above 
(Figure 1). According to earlier ESR studies of small metal 
particles,6 it would appear that this latter resonance is a 
composite of two contributions: (i) sharp lines associated with 
a range of silver aggregates with molecular cluster properties 
(four to six atoms suggested optically),1 '2'3 rather than metal 
microcrystallite properties, and (ii) a broader C ESR line as-
cribable to small silver microcrystallites on which the sharp 
lines (i) are superimposed. The temperature dependence of 
these ESR spectra indicate that silver atomic features decay 
to 0 in Ar at ~30-35 K, while the resonances associated with 
molecular silver clusters disappear at ~40-45 K, leaving be­
hind the broader, small-particle C ESR. This type of behavior 
seems to be mirroring the metal atom to cluster to bulk 
transformations observed in the corresponding optical 
spectra.'_3 
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